

Why real-time operating systems?

Kizito NKURIKIYEYEZU, Ph.D.

Case study of a Real-time system

FIG 1. Crazyflie—a programmable nano-quadcopter¹

¹https://www.bitcraze.io/products/crazyflie-2-1/

Kizito NKURIKIYEYEZU, Ph.D.

Why real-time operating systems?

Crazyflie—hardware

FIG 2. Crazyflie—a programmable nano-quadcopter

Kizito NKURIKIYEYEZU, Ph.D.

Crazyflie—hardware

FIG 3. Crazyflie—a programmable nano-quadcopter

FIG 4. Crazyflie — High-level System Architecture²

²https://wiki.bitcraze.io/projects:crazyflie2:architecture:index

Kizito NKURIKIYEYEZU, Ph.D.

■ nRF51822—low power CPU

- enabling power to the rest of the system
- battery management and voltage measurement
- wireless radio (boot and operate)
- detect and check expansion boards

■ nRF51822—low power CPU

- enabling power to the rest of the system
- battery management and voltage measurement
- wireless radio (boot and operate)
- detect and check expansion boards
- STM32F405—performance CPU
 - brain of the whole drone
 - responsible for flight control
 - Algorithms for DSP, PID etc
 - USB connection
 - User programmable (i.e., extensibility of the drone)

nRF51822—low power CPU

- enabling power to the rest of the system
- battery management and voltage measurement
- wireless radio (boot and operate)
- detect and check expansion boards

STM32F405—performance CPU

- brain of the whole drone
- responsible for flight control
- Algorithms for DSP, PID etc
- USB connection
- User programmable (i.e., extensibility of the drone)

UART—universal asynchronous receiver / transmitter

- communication protocol
- exchange of data packets to and from interfaces (wireless, USB)

nRF51822—low power CPU

- enabling power to the rest of the system
- battery management and voltage measurement
- wireless radio (boot and operate)
- detect and check expansion boards

STM32F405—performance CPU

- brain of the whole drone
- responsible for flight control
- Algorithms for DSP, PID etc
- USB connection
- User programmable (i.e., extensibility of the drone)

- UART—universal asynchronous receiver / transmitter
 - communication protocol
 - exchange of data packets to and from interfaces (wireless, USB)
- EEPROM—electrically erasable programmable read-only memory
 - used for firmware (part of data and software that usually is not changed, configuration data)
 - can not be easily overwritten in comparison to Flash
- Flash memory—non-volatile random-access memory for program and data

High-Level Software View

- Use FreeRTOS which we will use in the labs of this course^a
- Real-time tasks for motor control (gathering sensor values and pilot commands, sensor fusion, automatic control, driving motors using PWM (pulse width modulation, ...)
- non-real-time tasks (maintenance and test, handling external events, pilot commands, ...).

^ahttps://github.com/bitcraze/crazyflie-firmware

The end